skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anderson, Christopher N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Herberstein, Marie (Ed.)
    Abstract Interspecific territoriality has complex ecological and evolutionary consequences. Species that interact aggressively often exhibit spatial or temporal shifts in activity that reduce the frequency of costly encounters. We analyzed data collected over a 13-year period on 50 populations of rubyspot damselflies (Hetaerina spp.) to examine how rates of interspecific fighting covary with fine-scale habitat partitioning and to test for agonistic character displacement in microhabitat preferences. In most sympatric species, interspecific fights occur less frequently than expected based on the species’ relative densities. Incorporating measurements of spatial segregation and species discrimination into the calculation of expected frequencies accounted for most of the reduction in interspecific fighting (subtle differences in microhabitat preferences could account for the rest). In 23 of 25 sympatric population pairs, we found multivariate differences between species in territory microhabitat (perch height, stream width, current speed, and canopy cover). As predicted by the agonistic character displacement hypothesis, sympatric species that respond more aggressively to each other in direct encounters differ more in microhabitat use and have higher levels of spatial segregation. Previous work established that species with the lowest levels of interspecific fighting have diverged in territory signals and competitor recognition through agonistic character displacement. In the other species pairs, interspecific aggression appears to be maintained as an adaptive response to reproductive interference, but interspecific fighting is still costly. We now have robust evidence that evolved shifts in microhabitat preferences also reduce the frequency of interspecific fighting. 
    more » « less